Nitroarenes as electrophilic coupling partners in crosscoupling reactions The arylamine moiety represents a prevalent motif in a variety of pharmaceuticals and functional materials.

Aryl halides, which may cause undesirable halogen-based contamination.

Various aryl pseudohalides, including aryl sulfonates such as aryl triflates, tosylates, ethers, esters, sulfamates, and carbamates have been introduced as electrophilic coupling partners as surrogates for the aryl halides.

Nitroarenes can be directly obtained from the nitration of the parent arenes, which is generally highly selective toward monofunctionalization, while the halogenation of arenes sometimes affords a mixture of mono- and dihalogenated arenes.

The Suzuki-Miyaura Coupling of Nitroarenes

J. Am. Chem. Soc., 2017, 139, 9423

Buchwald–Hartwig Amination of Nitroarenes

Angew. Chem. Int. Ed., 2017, 56, 13307

Prof. Yoshiaki Nakao

Employment

2014-present	JST-CREST team leader
2014-present	Professor, Kyoto University
2012-2014	Associate Professor, Kyoto University
2011–present	JST-PRESTO researcher
2010-2012	Senior Lecturer, Kyoto University
2002-2010	Assistant Professor, Kyoto University

Education

2008	Max-Planck-Institut für Kohlenforschung (visiting scholar, work with Prof. Manfred T. Reetz)
2005	Ph. D., Graduate School of Engineering, Kyoto University
2001	Department of Chemistry, Yale University (visiting student, work with Prof. John F. Hartwig)
2000-2002	Department of Material Chemistry, Graduate School of Engineering Kyoto University (work with Profs. Tamejiro Hiyama and Eiji Shirakawa)
1998-2000	M. S., Department of Material Chemistry, Graduate School of Engineering, Kyoto University (work with Profs. Tamejiro Hiyama and Eiji Shirakawa)
1997-1998	B. S., Department of Industrial Chemistry, Faculty of Engineering Kyoto University

Research Interest

New Organometallic Reagents and Reactions for Selective Organic Synthesis

The Suzuki-Miyaura Coupling of Nitroarenes

J. Am. Chem. Soc., 2017, 139, 9423

MeO NO2	(HO) ₂ B	Pd(acac) ₂ (5.0 mol%) BrettPhos (20 mol%) 18-crown-6 (10 mol%) K ₃ PO ₄ •nH ₂ O (0.90 mmol) 1,4-dioxane, 130 °C, 24 h	MeO	MeO Cy ₂ P _{iPr}
1a	2a		3	BrettPhos
0.30 mmol	0.45 mmol			

-

.

Entry	Variation from the standard conditions	Yield of 3 (%) ^a	
1	none	86 (76) ^b	-
2	w/o 18-crown-6	69	
3	SPhos instead of BrettPhos	8	
4	RuPhos instead of BrettPhos	15	
5	CPhos instead of BrettPhos	9	
6	XPhos instead of BrettPhos	56	
7	PCy ₃ instead of BrettPhos	<5	Buchwald's ligands SPhos,
8	P'Bu ₃ instead of BrettPhos	<5 f	ound to be ineffective
9	IPr instead of BrettPhos	<5 v	vhereas XPhos provided 3
10	Pd(OAc) ₂ instead of Pd(acac) ₂	<u>63</u>	n moderate yield. In
11	Pd(PPh ₃) ₄ instead of Pd(acac) ₂	<5 c	contrast, PCy3, PtBu3, and
12	Pd ₂ (dba) ₃ instead of Pd(acac) ₂	65	Pr, which are effective for
13	PEPPSITM-IPr instead of Pd(acac) ₂	50	SMC of aryl halides and
14 ^c	BrettPhos Pd G3 instead of Pd(acac) ₂	56	rene sullonates, did not
15 ^d	K ₃ PO ₄ instead of K ₃ PO ₄ nH ₂ O	39	Pd(OAc)2, Pd2 (dba)3.
16	K ₃ PO ₄ + H ₂ O instead of K ₃ PO ₄ nH ₂ O	67 F	PEPPSI-IPr, or BrettPhos
17	K ₃ PO ₄ + 2H ₂ O instead of K ₃ PO ₄ ·nH ₂ O	69 F	Pd G3 were employed
18 ^d	K ₂ CO ₃ instead of K ₃ PO ₄ ·nH ₂ O	<5 i	nstead of Pd(acac)2 , 3 was
19 ^d	Cs2CO3 instead of K3PO4 nH2O	49 C	btained in moderate yield,
20^d	CsF instead of K ₃ PO ₄ ·nH ₂ O	78 ^v	vhereas Pd(PPh3)4 was not
21	Pd(OAc)2 and CsF instead of Pd(acac)2 and K3PO4·nH2O	36	enective.
22^{c}	BrettPhos Pd G3 and CsF instead of Pd(acac) ₂ and K ₃ PO ₄ ·nH ₂ O	63	
23	toluene instead of 1,4-dioxane	32	
24	THF instead of 1,4-dioxane	51	
25	addition of carbazole (5.0 mol%)	58	
26	addition of LiCl (20 mol%)	67	

^aDetermined by NMR analysis using 1,3,5-trimethoxybenzene as an internal standard; ^bisolated yield obtained from using 1a (0.60 mmol), 2a (0.90 mmol) and K₃PO₄·nH₂O (1.8 mmol); ^cusing BrettPhos (15 mol%); din the absence of 18-crown-6.

^{*a*}Isolated yield after hydrolysis of the corresponding acetals. ^{*b*}Reaction with arylboronic acid (1.2 mmol). ^{*c*}Reaction with CsF (1.8 mmol) in toluene (3.0 mL). ^{*d*}Reaction with CsF (3.0 mmol) in toluene (3.0 mL). ^{*e*}Reaction with RuPhos (20 mol %) instead of BrettPhos and CsF (1.8 mmol). ^{*f*}Reaction with CsF (1.8

Unsuccessful substrates

Ph B(OH)₂

Me-B(OH)₂

Coupling reaction of aniline or nitrosobenzne with 4-methoxyphenylboronic acid

Coupling reaction in presence of radical scavengers

DFT-calculated geometries and Gibbs energy changes of the proposed catalytic cycle.

In summary

The reaction is particularly important to afford unsymmetric biaryl compounds, which are frequently encountered as core structural motifs in pharmaceuticals, agrochemicals, and organic materials.

Nitroarenes, on the other hand, are highly versatile and common aromatic building blocks in organic synthesis.

They can be directly obtained from the nitration of the parent arenes, which is generally highly selective toward monofunctionalization, while the halogenation of arenes sometimes affords a mixture of mono- and dihalogenated arenes.

Nitroarenes, particularly those bearing other electron-withdrawing groups, undergo nucleophilic substitution reactions, in which the NO2 group serves as a leaving group.

Buchwald–Hartwig Amination of Nitroarenes

Angew. Chem. Int. Ed., 2017, 56, 13307

Entry	Nitroarene		Amine	Yield [%]
1	NO	1a	2a	73 (3 aa)
2		16	2a	83 (3 ba)
3[4]	Ph NO2	1c	2a	74 (3 ca)
4	MeO NO2	٦d	2a	66 (3 da)
5	Me NO ₂	le	2a	77 (3 ea)
6		1f	2a	56 (3 fa)
7	F NO2	۱g	2a	62 (3 ga)
g[b,c,d,e]		1 h	2 a	57 <mark>(3 ha</mark>)

Entry	Nitroarene		Amine	Yield [%]
9 ^[4,1]		11	2a	64 (3 ia)
10 ⁽ⁱ⁾		1j	2a	78 (3 ja)
11 (peg)	MeO ₂ C NO ₂	1k	2a	51 (3 ka)
12 ^[b,c,d,g]	MeO ₂ S NO ₂	11	2a	50 (3 la)
13 ^(b)		lm	2b	74 (3 mb)
14	NO ₂	ln	2 b	65 (3 nb)
15(1)	NO2	10	2a	52 (3 oa)

[a] Reaction conditions, unless stated otherwise: 1 (0.60 mmol, 1.0 equiv), 2 (1.5 equiv), Pd(acac)₂ (5 mol%), L1 (15 mol%), dried K₃PO₄ (3 equiv), *n*-heptane (3.0 mL), 130°C, 24 h. Yields of isolated products are given. [b] Diarylamine (1.8 mmol). [c] L3 instead of L1.
[d] K₃PO₄·*n* H₂O instead of dried K₃PO₄. [e] 1,4-Dioxane instead of *n*-heptane. [f] L2 instead of L1. [g] Toluene instead of *n*-heptane. 2b: bis(4-*tert*-butylphenyl)amine.

Entry	Amine		Yield [%]
1 ^(b)	H ₂ N	2c	64 (3 dc)
2	Me	2 d	41 (3 dd)
3	H'N	2e	61 (3 de)
4 ^[c]	H ₂ N	2 f	81 (3 ef)
5	H ₂ N	2 g	72 (3 dg)

[a] Reaction conditions, unless stated otherwise: 1d (0.60 mmol, 1.0 equiv), 2 (1.5 equiv), Pd(acac)₂ (5 mol%), L1 (15 mol%), K₃PO₄·nH₂O (3 equiv), 1,4-dioxane (3.0 mL), 130 °C, 24 h. Yields of isolated products are given. [b] DMF instead of 1,4-dioxane. [c] 1e instead of 1d.

Plausible mechanism

In summary

The Buchwald–Hartwig amination is a highly efficient and versatile method to access substituted arylamines.

Nitroarenes been used as electrophiles for the cross-coupling with organotin amides and amines in the presence of palladium-based catalysts to furnish arylamines.

Aryl halides and various aryl pseudohalides may cause undesirable halogenbased contamination. The use of nitroarenes as pseudohalides in the Buchwald–Hartwig amination may also circumvent these problems.

Nitroarenes are useful in an academic and industrial context as nitroarenes are readily available and serve as building blocks for functionalized arenes.

J. Am. Chem. Soc., 2009, 131, 12898

Org. Lett., 2011, 13, 1726

Previous work

Green Chem., 2012, 14, 912

Catal. Commun., 2013, 41, 123

Different approaches for amidation of esters.

- Direct, catalytic activation of unactivated esters
- Cheaper & more stable nitroarenes in place of anilines
- Broad scope of esters & nitroarenes
- Wide applications in synthesis of bio-active compounds

Nature Communications **2017**, *8*, 14878.