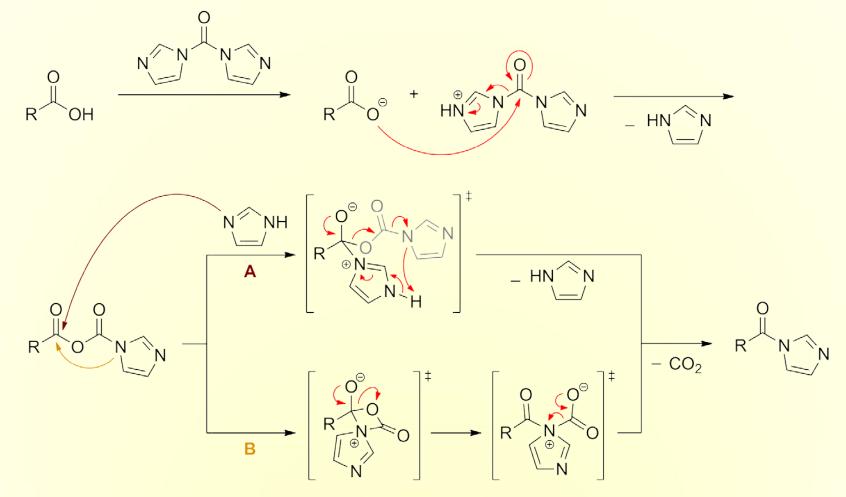
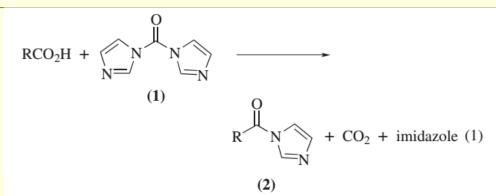

2016-11-15 WZQ

Physical Data: mp 116–118 °C. commercially available white solid.

Solubility: no quantitative data available. Inert solvents such as THF, benzene, CHCl3, DMF are commonly used for reactions.

Handling, Storage, and Precautions: moisture sensitive; reacts readily with water with evolution of carbon dioxide. May be kept for long periods either in a sealed tube or in a desiccator over P2O5




Preparative Method: prepared by mixing phosgene with four equivalents of imidazole in benzene/THF.

Analysis of Reagent Purity: purity can be determined by measuring the amount of CO2 evolved on hydrolysis.

Purification: may be purified by recrystallization from hot, anhydrous THF with careful exclusion of moisture.

The proposed mechanism for the reaction between a carboxylic acid and CDI

The method can be applied to a wide range of aliphatic, aromatic, and heterocyclic carboxylic acids, including some examples (such as formic acid and vitamin A acid) where acid chloride formation is difficult.

The reactivity of (2) is similar to that of acid chlorides, but the former have the advantage that they are generally crystalline and easily handled.

Isolation of (2) is simple, but often unnecessary; further reaction with nucleophiles is usually performed in the same reaction vessel.

(2) can be even conversed into acid chlorides (via reaction with HCI), hydrazides, 3 hydroxamic acids, and peroxy esters

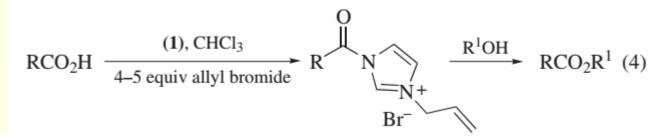
APPLACATIONS:

The use of stoichiometric **1,8-Diazabicyclo[5.4.0]-undec-7-ene** as base has been shown to provide good yields of *t*-butyl esters even for acids with acidic α -protons. This procedure was unsuccessful **for pivalic acid** or for **N-acyl-\alpha-amino acids**.

Ph(CH ₂) ₃ CO ₂ H	1. 1 equiv (1), DMF 40 °C, 1 h 2. 1 equiv <i>t</i> -BuOH	Ph(CH ₂) ₃ CO ₂ - <i>t</i> -Bu
	1 equiv DBU 40 °C, 24 h	

APPLACATIONS:

3	R	Reaction conditions [°C], [h]	Yield" [%]	b.p.∕torr ^b [°C]	n ²⁰ _D	Molecular formula or b.p./torr [°C] (Refractive Index) reported	High-Resolution M.S. m/e of M ⁺
а	<u> </u>	40°, 5	91	128~130°/5	1.4911	$94^{\circ}/10^{9} (n_{D}^{20}: 1.4908)^{3}$	
b	(3b : Ref. ¹⁰)	40°, 24	85	135-140°/2	1.5052	$\frac{131-132^{\circ}/17^{10}}{(n_{D}^{25};1.5024)^{19}}$	
с	CH2-CH2-CH2CH2	40°, 10	75	150-155°/2	1.4847	C ₁₁ H ₁₄ O ₃ (220.14633)	220.14099
đ		40°, 6	84	130-135°/2	1.4870	108°/811	
e	n-C6H13	40°, 5	76	103-106°/2	1.4156	C ₁₁ H ₂₂ O ₂ (186.16235)	186.16198
f	H ₃ C-CH ₂ -CH ₂ -CH I CH ₃	40°, 24	85	104-105°/8	1.4066	$\frac{60-61^{c}/59^{10}}{(n_{D}^{25}:1.3986)^{10}}$	
9	⊂X _H	40°, 15	74	109~110°/5	1.4399 (n ²⁵ : 1.4378)	$82.5-85.5^{\circ}/9^{12} (n_D^{25}: 1.4370)^{12}$	
h	СН=Сн-	40°, 24	64	150-155°/2	$(n_D^{16}: 1.5402)$	$160^{\circ}/4^{13} (n_{D}^{16}: 1.5414)^{13}$	
i	С сн=сн-	40°, 24	54	120-125°/2	1.5247	$C_{11}H_{14}O_3$ (194.09429)	194.09149
j	H (1j: Ref. ¹⁴)	80°, 5	68	168-172°/1	1.5248	C ₁₈ H ₂₂ O ₄ (302.15181)	302.15616


Table 1. t-Butyl Carboxylates (3) prepared

* Yield of isolated product.

^b Bath temperature of Kugelrohr vacuum distillation.

APPLACATIONS:

An alternative approach to increasing the rate of esterification is to activate further the intermediate

TABLE IV.	Formylation	of Alcohols	and Phenols
-----------	-------------	-------------	-------------

ROH	Reaction ^{a)} conditions	ROCHO Yield (%)
СН3-ОН	r.t. 3h	83
PhCH ₂ CH ₂ OH	r.t. lh	95
Ph(CH ₂) ₂ CHCH ₃ OH	r.t. 4h	95
ÓН		

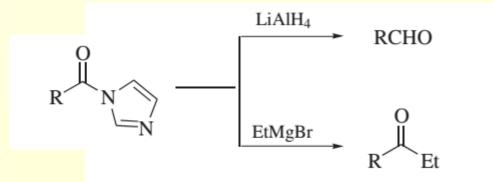
- The reaction was carried out by method A using allyl bromide and an equimolar amount of a) formic acid. Chem. Pharm. Bull. 32(12)5044-5047(1984)
 - r.t. = room temperature.

APPLACATIONS:

An alternative approach to increasing the rate of esterification is to activate further the intermediate

RCOOH	Reaction ^{a)} conditions	RCOOC(CH ₃) ₃ Yield (%)
сн ₃ о-О-соон	Reflux 3 h	80 $(<5)^{b}$
PhCH = CHCOOH	Reflux 3 h	80
Ph CH ₃ CH ₂ CHCOOH	Reflux 10h	95
PhCH ₂ CH ₂ CH ₂ COOH	Reflux 10 h	95 $(<5)^{b}$
(CH ₃) ₃ CCOOH	Reflux 6 h	90

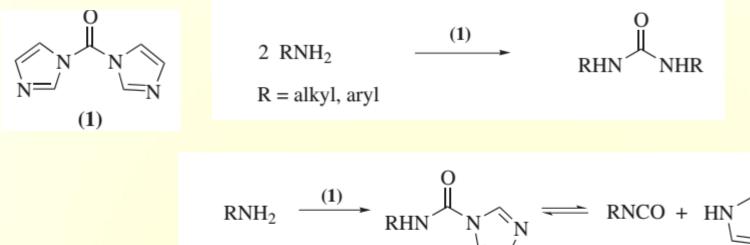
TABLE II. Esterification with tert-Butanol

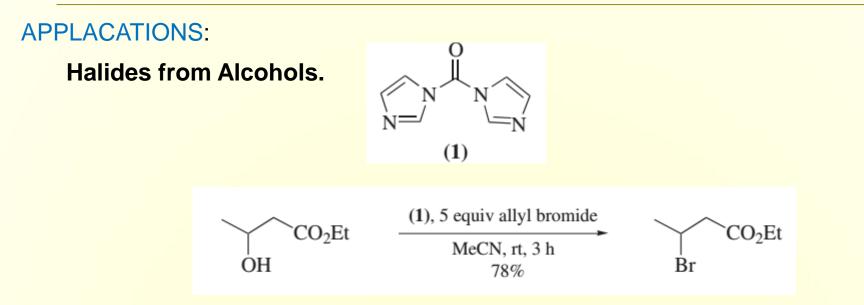

a) The reaction was carried out by method A using allyl bromide and an excess of tert-butanol.

b) The reaction was carried out in the absence of allyl bromide.

Chem.	Pharm.	Bull.
32(12)50	44-5047	(1984)]

APPLACATIONS:

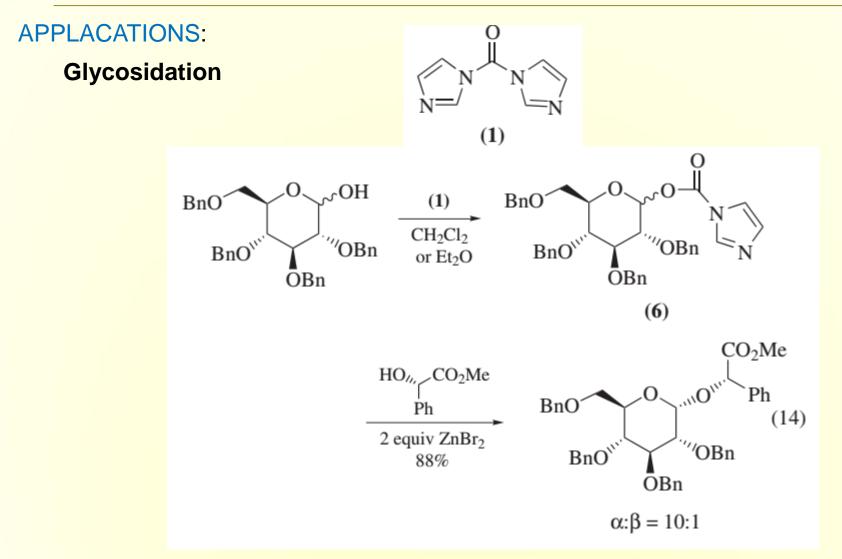

Aldehydes and Ketones from Carboxylic Acids. Reduction of the derived acylimidazole with *Lithium Aluminum Hydride* achieves conversion of an aliphatic or aromatic carboxylic acid to an aldehyde


Staab, H. A.; Lüking, M.; Dürr, F. H., *Chem. Ber.* **1962**, *95*, 1275 (*Chem. Abstr.* **1962**, *57*, 5908a).

APPLACATIONS:

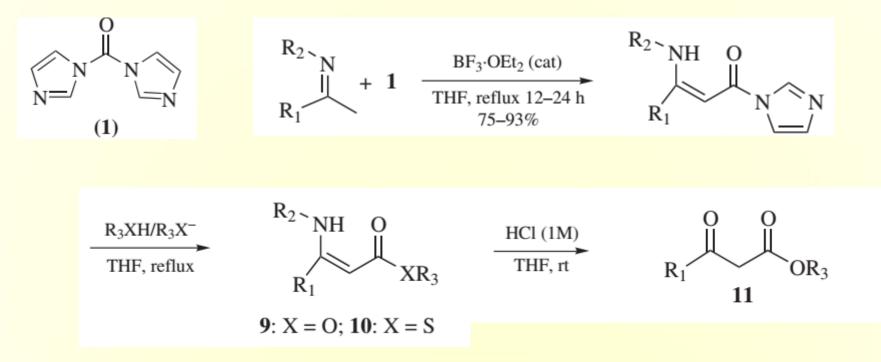
Ureas and Carbonates.

 $RNH_{2} \xrightarrow{(1)} RHN \xrightarrow{N} RNCO + HN \xrightarrow{N} RNCO + HN \xrightarrow{N} R$ $R = alkyl, aryl \qquad (4)$ $ROH \xrightarrow{(1)} ROH \xrightarrow{(1)} RO \xrightarrow{N} N$

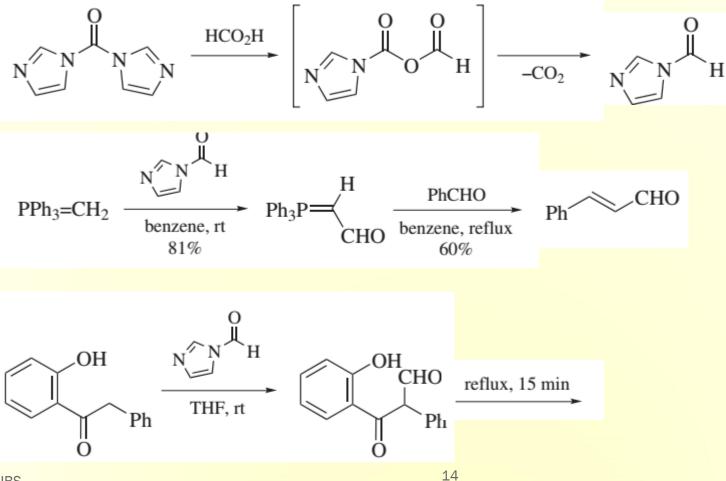


Any halide more reactive than the product halide may be used, but in practice Allyl Bromide or *lodomethane* give best results as they are effective and readily removed after the reaction.

Acetonitrile is the best solvent and yields are generally high (>80%). Bromide or iodide formation work well, but not chlorination.


Optically active alcohols are racemized.

Kamijo, T.; Harada, H.; lizuka, K., Chem. Pharm. Bull. 1983, 31,4189.



APPLACATIONS:

Preparation of β -Enamino Acid Derivatives.

APPLACATIONS: *N*-Formylimidazole

