
ESCHWEILER-CLARKE METHYLATION

$$R-NH_2 \xrightarrow{\text{HCOOH (xs)}} R-N \stackrel{\text{Me}}{\underset{\text{Me}}{}}$$

Hydride donor: Formic acid Sodium borohydride, sodium cyanoborohydride, NaBH₃CN-Ti(Oi-Pr)₄, NaBH(OAc)₃, borohydride exchange resin (BER)

Mechanism:

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

Synthetic Applications

During the total synthesis of (–)-calyculin A and B, A.B. Smith and co-workers utilized a modified *Eschweiler-Clarke methylation* to convert a complex primary amine to the corresponding *N,N*-dimethylamino derivative.²⁷ The *N*-Boc protected primary amine was first deprotected using TMSOTf, followed by introduction of the two methyl groups using HCHO/NaBH₃CN in AcOH/CH₃CN solvent mixture. The acetonide protecting group was subsequently removed, and the resulting diol was silylated.

Synthetic Applications

The enantioselective total syntheses of several piperidine and pyrrolidine alkaloids of tobacco were accomplished in the laboratory of J. Lebreton.²⁰ In the final stage of the total synthesis of (S)-N-methylanabasine, a one-pot Cbz-deprotection-hydrogenation-Eschweiler-Clarke methylation was carried out using a HCHO/MeOH/Pd(C)/H₂ system at room temperature with an overall 88% yield.

The oxindole alkaloid (–)-horsfiline was synthesized by K. Fuji et al. using an asymmetric nitroolefination as the key step. 28 During the endgame of the total synthesis, an N-methylation was performed on the five-membered secondary amine using the original Eschweiler-Clarke methylation conditions (HCO₂H/HCHO/reflux). Unfortunately, these harsh methylation conditions led to the racemization of the quaternary stereocenter. Therefore, milder modified conditions were applied (NaBH₃CN as the reducing agent) to retain the optical activity of the substrate.