FLEMING-TAMAO OXIDATION
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Advantages:

1) Phenylsilanes are more robust than alkoxysilanes.

2) Carbon-silicon bonds can be introduced stereospecifically.

3) The oxidation conditions are mild enough to tolerate a wide
range of functional groups even in complex substrates.

4) The two-step reaction can also be conducted in one-pot by
using Hg?* or Br* as electrophiles.



Mechanism of Tamao oxidation
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Tamao oxidation
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Disadvantages

1) The oxidation of silyl groups attached to tertiary carbons of
cyclic systems do not always proceed with ease;

7/‘H 7”DH TPh F’hpi?,/ﬁ F’:rph F'f;r?,/‘EuD R,

Fast oxidation Moderate oxidation Very slow oxidation No ox|dation

-

R=Me, Et. 'Pr. 'Bu

2) In the presence of tertiary amines, special conditions are
required to avoid N-oxide formation.



In the laboratory of F.G. West, the stereoselective silyl-directed [1,2]-Stevens rearrangement of ammonium ylides
was investigated as a potential key step toward the enantioselective synthesis of various hydroxylated
quinolizidines."® The dimethylphenylsilyl group served as a surrogate for one of the hydroxyl groups in the product.
The Fleming-Tamao oxidation was performed under Denmark’s conditions to avoid oxldatlcnn of the tertiary amine to
the corresponding N-oxide, and the desired quinolizidine diol was obtained in 81% yleld

NI~ 20 Me,PhSi O
ezrnal Mep_PhS| OH

- H AcOH, TFA, CHCI
Me,PhSi Cu(acac), : DIBAL-H, -78 °C d “Ha(CF.COy
: PhCHj - ST |

N 85 °C DCM; 88% AcOOH

58% 81%

Quinolizidine diol

Scheme 1

o

x
. | H
@‘ X " Cutacau:ii Q‘ | n.a i/\*/\uj
W [ij% N_
n 8]
Q0 {n= 0 indolizidine

(X = masked OH) n=1: quinolizidina)

It was discovered that N-oxide production could be controlled by conducting
the oxidation at room temperature rather than the standard 50 °C protocol.



Synthetic Applications

The synthesus Df the C1-C21 subunit of the protein phosphatase inhibitor tautomycin was accomplished by J.A.
Marshall et al.” Dunng the last steps of the synthetic sequence, the hydrosilylation of a terminal alkyne afforded a
five-membered siloxane that was oxidized by the Fleming-Tamao oxidation. The initially formed enol tautomerized to
the corresponding methyl ketone.

H,0,, KF
KHCO,

MeOH

C1-C21 Subunit of tautomycin
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