

 SiR_3 = SiMe₂H, SiMe₂F, SiMe₂Cl, SiCl₃, SiMe₂(NEt₂), SiMe₂(OR), SiMe(OR)₂, Si(OR)₃ A / KF MF X = F, OAc *Fleming (1984)*

Advantages:

1) Phenylsilanes are more robust than alkoxysilanes.

- 2) Carbon-silicon bonds can be introduced stereospecifically.
- 3) The oxidation conditions are mild enough to tolerate a wide range of functional groups even in complex substrates.
- The two-step reaction can also be conducted in one-pot by using Hg²⁺ or Br⁺ as electrophiles.

Mechanism of Tamao oxidation

Mechanism of Fleming oxidation

Tamao oxidation

Disadvantages

 The oxidation of silyl groups attached to tertiary carbons of cyclic systems do not always proceed with ease;

2) In the presence of tertiary amines, special conditions are required to avoid N-oxide formation.

In the laboratory of F.G. West, the stereoselective *silyl-directed* [1,2]-Stevens rearrangement of ammonium ylides was investigated as a potential key step toward the enantioselective synthesis of various hydroxylated quinolizidines.¹⁹ The dimethylphenylsilyl group served as a surrogate for one of the hydroxyl groups in the product. The *Fleming-Tamao oxidation* was performed under Denmark's conditions to avoid oxidation of the tertiary amine to the corresponding *N*-oxide, and the desired quinolizidine diol was obtained in 81% yield.¹⁷

It was discovered that *N*-oxide production could be controlled by conducting the oxidation at room temperature rather than the standard 50 °C protocol.

Synthetic Applications

The synthesis of the C1-C21 subunit of the protein phosphatase inhibitor tautomycin was accomplished by J.A. Marshall et al.²² During the last steps of the synthetic sequence, the *hydrosilylation* of a terminal alkyne afforded a five-membered siloxane that was oxidized by the *Fleming-Tamao oxidation*. The initially formed enol tautomerized to the corresponding methyl ketone.

