
PASSERINI MULTICOMPONENT REACTION

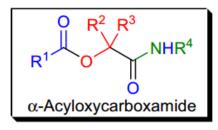
compound

$$R^{1}$$
 α -Acyloxycarboxamide

 R^{2}
 R^{3}
 NHR^{4}
 α -Hydroxycarboxamide

 R^{2}
 R^{3}
 NHR^{4}
 α -Hydroxycarboxamide

α-Hydroxyalkyltetrazole

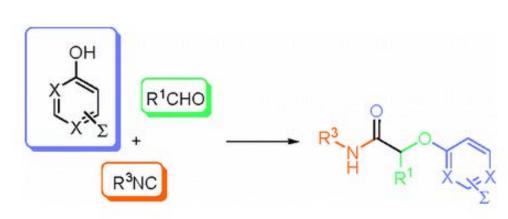

R¹ = alkyl, aryl; R² = alkyl, aryl; R⁴ = alkyl, aryl; R³ = H, alkyl, aryl; <u>Brönsted acid</u>: HCl, HNO₃, H₃PO₄, H₂SO₄; <u>Lewis acids</u>: BF₃·OEt₂, TiCl₄

Reaction mechanism

Ionic mechanism

Concerted mechanism

+
$$C = N - R^4$$
 apolar solvent or carbonyl compound apolar solvent or carbonyl compound



- It is carried out at high concentrations of the starting materials in inert solvents at or below room temperature;
- It is accelerated in apolar solvents;
- There are rare limitations to the carbonyl component, only sterically hindered ketones and α,β-unsaturated ketones are unreactive;
- In addition to C-isocyanides, trimethylsilyl isocyanide also undergoes the reaction;
- Catalytic asymmetric variants of the reaction were also developed

Br 1a 2a 3a
$$\frac{CO_2H}{10 \text{ mol } \% \text{ CP}}$$
 $\frac{OR}{Solvent, \text{ rt. } 36 \text{ h}}$ $R = \frac{CO_2H}{SOlvent, \text{ rt. } 36 \text{ h}}$

UGI MULTICOMPONENT REACTION

Mechanism

Laurence Grimaud.et Org. Lett. 2006, 8, 5021

• R¹
$$\stackrel{\longrightarrow}{}$$
 $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{\longrightarrow}{}$ $\stackrel{\longrightarrow}{}}$ $\stackrel{$