VILSMEIER-HAACK FORMYLATION

 R^{1-2} = alkyl, aryl; <u>acid chloride</u>: POCl₃, SOCl₂, COCl₂, (COCl₂, Ph₃PBr₂, 2,4,6-trichloro-1,3,5-triazine; <u>solvent</u>: DCM, DMF, POCl₃; EDG = OH, O-alkyl, O-aryl, NR₂; R^{3-4} = H, alkyl, aryl; R^5 = alkyl, aryl; X = O, NR, CH₂, CR₂; Y = O, S, NR, NH; R^6 = H, alkyl, aryl

NIBS

Xiaolei Liu

features

1) the Vilsmeier reagent is prepared from any N,N-disubstituted formamide by reacting it with an acid chloride (e.g., POCl₃, SOCl₂, oxalyl chloride);

2) most often the combination of DMF and POCl₃ is used and the resulting Vilsmeier reagent is usually isolated before use;

3) mostly electron-rich aromatic or heteroaromatic compounds as well as electron-rich alkenes and

1,3-dienes are substrates for the transformation, since the Vilsmeier reagent is a weak electrophile;

4) the relative reactivity of five-membered heterocycles is pyrrole > furan >thiophene;

5) the solvent is usually a halogenated hydrocarbon, DMF or POCI3 and the nature of the solvent has a profound effect on the electrophilicity of the reagent, so it should be carefully chosen;

6) the required reaction temperature varies widely depending on the reactivity of the substrate and it ranges from below 0°C up to 80°C;

7)the initial product is an iminium salt, which can be hydrolyzed with water to the corresponding aldehyde, treated with H_2S to afford thioaldehydes, reacted with hydroxylamine to afford nitriles, or reduced to give amines;

8) the transformation is regioselective favoring the less sterically hindered position (this means the *para* position on a substituted benzene ring); but electronic effects can also influence the product distribution

9) Vinylogous chloromethyliminium salts undergo similar reaction to afford the corresponding α , β -unsaturated carbonyl compounds upon hydrolysis.

mechanism

Mechanism: 34-41,8,42,11

application

Other Formylation reactions

GATTERMANN AND GATTERMANN-KOCH FORMYLATION

1897 Gattermann-Koch Formylation:

CO/HCI

1 atm or

Gattermann Formylation:

Gattermann-Koch Formylation:

R = alkyl

Other Formylation reactions

REIMER-TIEMANN REACTION

R¹ = H, alkyl, OH, O-alkyl, CO₂H, NO₂, CI, Br, I; R² = H, alkyl; <u>dichlorocarbene precursor</u>: CHCl₃, Cl₃CCO₂H, Cl₃CCHO, Cl₃CNO₂; <u>base</u>: NaOH, KOH, CsOH;

1) the regioselectivity is not high, but ortho-formyl products tend to predominate;

2) when the ortho-position is already substituted, para-formyl phenols are obtained;

3) in the case of pyrroles, when the *ortho* substituent is a CO2H or CO2R group, decarboxylation is observed and the *o*-formyl product is formed (similar findings were reported for an *o*-alkoxy phenol where the alkoxy group was eliminated to give an *o*-formyl phenol);

4) when the reaction is conducted in the presence of cyclodextrins, the *p*-formyl product is formed predominantly.

Other Formylation reactions

REIMER-TIEMANN REACTION

Mechanism: 4,25,6,7

6