Chemistry of the year-2021/齐湘兵lab

Cobalt-catalysed enantioselective $C(sp^3)$ - $C(sp^3)$ coupling

Y. Li, W. Nie, Z. Chang, J.-W. Wang, X. Lu, Y. Fu, Nature Catalysis 4(10) (2021) 901-911

- Cobalt catalytic system enabled enantioselective alkyl–alkyl coupling
- Stereochemical control without a directing group or proximal p/π orbital
- Aliphatic C–F stereogenic centre at the desired position in an alkyl chain

G.C. Fu, Science 356(6334) (2017)

> Activated electrophiles

> Kumada Reactions of Alkyl Electrophiles

G.C. Fu, J Am Chem Soc 132 (2010) 1264–1266. G.C. Fu, J Am Chem Soc 141(38) (2019) 15433-15440

> Kumada Reactions of Alkyl Electrophiles

> Mechanistic Investigation

> Unactivated electrophiles

> Suzuki Reactions of Alkyl Electrophiles

G.C. Fu, J Am Chem Soc 134(13) (2012) 5794-7

> Suzuki Reactions of Alkyl Electrophiles

> M-H insertion across alkenes

Entry	Nickel source	Ligand	Reductant	Solvent	Yield ^a /%
1	NiBr ₂ (diglyme)	L1	Zn	DMAc	23
2	NiBr ₂ (diglyme)	L2	Zn	DMAc	32
3	$NiBr_2(diglyme)$	L3	Zn	DMAc	47
4	NiBr ₂ (diglyme)	L4	Zn	DMAc	79
5	NiCl ₂	L4	Zn	DMAc	33
6	$Ni(NO_3)_2$	L4	Zn	DMAc	<5
7	$Ni(acac)_2$	L4	Zn	DMAc	26
8	$NiCl_2(Py)_4$	L4	Zn	DMAc	75
9	$NiCl_2(PPh_3)_2$	L4	Zn	DMAc	23
10	$NiCl_2(PCy_3)_2$	L4	Zn	DMAc	17
11	NiBr ₂ (diglyme)	L4	Zn	Dioxane	<5
12	NiBr ₂ (diglyme)	L4	Zn	DME	22
13	NiBr ₂ (diglyme)	L4	Zn	THF	43
14	NiBr ₂ (diglyme)	L4	Zn	MeCN	<5
15	NiBr ₂ (diglyme)	L4	Zn	NMP	54
16	NiBr ₂ (diglyme)	L4	Zn	DMF	60
17	NiBr ₂ (diglyme)	L4	Zn	DMSO	95 (92 ^b)
18	NiBr ₂ (diglyme)	L4	Mn	DMSO	64
19	NiBr ₂ (diglyme)	L4	DEMS/Na ₂ CO ₃	DMSO	18
20	NiBr ₂ (diglyme)	L4	$(BPin)_2/K_3PO_4$	DMSO	22

Y. Fu, Chemical Science 10(3) (2019) 809-814

3am, 70%

Ar = 3,4-dimethoxy-phenyl

entry	nickel source	ligand	reductant	yield (%) ^b		
1	NiBr₂∙diglyme	L1	Zn	10	tBu tBu	
2	NiBr₂∙diglyme	L1	Mn	17		
3	NiBr₂∙diglyme	L1	DEMS/Na ₂ CO ₃	23		N N
4	NiBr₂∙diglyme	L1	$(Bpin)_2/K_3PO_4$	37		L2
5	NiBr₂∙diglyme	L2	$(Bpin)_2/K_3PO_4$	44		
6	NiBr₂∙diglyme	L3	$(Bpin)_2/K_3PO_4$	3		L N L N
7	NiBr ₂ ·diglyme	L4	$(BPin)_2/K_3PO_4$	55		N_/
8	$Ni(COD)_2$	L4	$(Bpin)_2/K_3PO_4$	64	L3	L4
9 ^d	$Ni(COD)_2$	L4	$(Bpin)_2/K_3PO_4$	77 (74) [°]		
10 ^e	$Ni(COD)_2$	L4	$(Bpin)_2/K_3PO_4$	94 (92) ^c		

1	None	90 (85) ^a	97
2	L1, L2 or L3	Trace	-
3	L4	37	91
4	L5	52	91
5	CoCl ₂	64	96
6	Col ₂	35	96
7	Co(acac) ₂	Trace	-
8	$CoCl(PPh_3)_3$ or CoF_3	Trace	-
9	PMHS	71	97
10	MeEt ₂ SiH	Trace	-
11	Cs ₂ CO ₃	40	98
12	KF	76	98
13	LiO ^t Bu	17	85
14	1,4-Dioxane ^b	23	91
15	Diglyme	86	96
16	DMAc	8	59
17	CH ₃ CN, DCE or ^{<i>i</i>} Pr ₂ O	Trace	- 20

Y. Fu, Nature Catalysis 4(10) (2021) 901-911.

> Scope of alkyl halides in hydroalkylation

> Scope of alkyl halides in hydroalkylation

> Scope of monofluoroalkenes in hydroalkylation

> Scope of monofluoroalkenes in hydroalkylation

> Synthesis application

26

-128.0 -128.2 -128.4 -128.6 -128.8 -129.0 -129.2 -129.4 -129.6 -129.8 -130.0 -130.2 -130.4 -130.6 -130.8 -131.0 -131.2 -131.4 -131.6 -131.8 -132.0 -132.2 -132.4 -13 fl (ppm)

b. Deuterium-labelling experiments

> Preliminary mechanism studies

> Proposed mechanism

a. Electronic effect analysis of the regio-determining step.

b. Optimized structures of d-TS1-L4 and d-TS2-L4.

Summery

- □ The reaction products were chiral Fluoroalkanes.
- This reaction exhibits a catalyst-controlled enantioselectivity, making traditional directing or auxiliary groups unnecessary.
- Preliminary mechanistic studies indicate that hydrometalation was the turnover-limiting step and stereo-determining step.

Thank you!