

Biosynthesis of strychnine

https://doi.org/10.1038/s41586-022-04950-4

Received: 1 February 2022

Accepted: 8 June 2022

Published online: 6 July 2022

Open access

Check for updates

Benke Hong¹, Dagny Grzech¹, Lorenzo Caputi¹, Prashant Sonawane¹, Carlos E. Rodríguez López¹, Mohamed Omar Kamileen¹, Néstor J. Hernández Lozada¹, Veit Grabe² & Sarah E. O'Connor^{1⊠}

Benke, Hong

Sarah E. O'Connor

Yongle Luo

01/14/2023

Strychnine

Brief timeline of strychnine research

Metabolic analysis of S. nux-vomica

Metabolic analysis of *Strychnos* sp.

Previous feeding studies

From tryptophan and GPP to geissoschizine 1

From tryptophan and GPP to geissoschizine 1

b

Expression profiles of candidate genes

sten 2 roor2 stem , ⁷⁰⁰⁴7 leaf 2 **SnvGES** SnvTDC SnvG10H1 SnvG10H2 SnvGOR SnvISY SnvIO1 SnvIO2 Snv7DLGT Snv7DLH SnvLAMT1 SnvLAMT2 **SnvSLS** SnvSTR SnvSGD1 SnvSGD2 SnvGS

min _____ max

Coexpression analysis of candidate genes

а

The proposed biosynthesis pathway for strychnine and brucine

From geissoschizine 1 to dehypreakummicine 2

From geissoschizine 1 to dehypreakummicine 2

N. Benthamiana 本氏烟草

Agrobacterium tumefaciens-mediated transient expression

From geissoschizine 1 to dehypreakummicine 2

From geissoschizine 1 to norfluorocurarine 4

From geissoschizine 1 to norfluorocurarine 4

snvNS1 and snvSN2 led to production of 4 and substantially decreased levels of 3

The order of the reactions is first oxidation to form 18-OH norfluorocurarine 5, followed by reduction.

Mechanistic hypothesis for SnvWS

Proposed mechanism for the stereoselective formation of C2 and C16 chiral center in 6 and 7

Mechanistic hypothesis for SnvWS

Docking model of SnvWS with 18-OH norflurocurarine 5

The proposed biosynthesis pathway for strychnine and brucine

Metabolic analysis of Strychnos sp.

Snv. and sp. share a common pathway from 1 to 6

S. *nux-vomica* and *Strychnos* sp. share the same biosynthesis pathway from 1 to 6

From Weiland-Gumlich aldehyde 6 to diaboline 8

From Weiland-Gumlich aldehyde 6 to prestrychnine 9

Arginine residue is responsible for the malonyl-CoA selectivity

Arginine residue is responsible for the malonyl-CoA selectivity

Docking model of SnvAT with malonyl-CoA

From Weiland-Gumlich aldehyde 6 to strychnine 10

Retention Time [min]

Proposed mechanism for the strychnine 10 and isostrychnine 11 formation

Mechanism A

prestrychnine 9

From Weiland-Gumlich aldehyde 6 to strychnine 10

чн / ОН

O

Isostrychnine 11 (+)

Strychnine 10 (+)

The proposed biosynthesis pathway for strychnine and brucine

From strychnine 10 to brucine 15

- 12 full-length cytochrome P450 proteins \rightarrow Snv10H
- 5 methyltransferases \rightarrow SnvOMT
- 3 cytochrome P450 proteins \rightarrow Snv11H

From geissoschizine 1 to strychnine 10 and brucine 15

The complete biosynthetic pathway leading to the production of diaboline 8, strychnine 10 and brucine 15

Proposed biosynthetic pathway for diboline 8, strychnine 10, and brucine 15

Thank you!