## Biocatalytic C–H oxidation meets radical crosscoupling Simplifying complex piperidine synthesis



Yongle Luo 1/18/2025



#### Phil S. Baran Professor Scripps Research Institute

B.S. New York University, 1997
Ph.D. The Scripps Research Institute, 2001
Postdoctor, Harvard University, E.J. Corey
Associate Professor, Scripps Institute, 2003
Professor, Scripps Institute, 2008-present



Hans Renata Associate Professor Rice University

B.S. Columbia University, 2008
Ph.D. The Scripps Research Institute, 2013
Postdoctor, Caltech, Frances Arnold
Investigator, Scripps Institute, 2016
Associate Professor, Rice University, 2022-present



#### Yu Kawamata Institute investigator Scripps Research Institute

B.S. Kyoto University, 2011B.S. Kyoto University, 2013Ph.D. Kyoto University, 2016

### Piperidine is a representative motif in drugs and natural products





Fsp<sup>3</sup> = (number of sp<sup>3</sup> hybridized carbons/total carbon count)

Distribution of *N*-heterocyclic drugs in the FDA database

#### Two stage elaboration of 3D scaffolds analogous to "flatland" strategies



### Scalable, biocatalytic synthesis of hydroxylated piperidines

**Preparative scale production of enantiopure piperidine building blocks** OH HO,,, OH HO **`OH** .OH .OH .OH .OH 'N' Boc Boc Boc Boc Boc 15 17 18 14 16 82% over 2 steps\* 78% over 2 steps 99% over 2 steps\*\* 78% over 2 steps 67% over 2 steps \$1,737/g (ChemScene) \$1,028/g (ChemScene) \$773/g (ChemScene) \$1,241/g (ChemScene) Not commercial OH 1. FoPip4H, O<sub>2</sub>,  $\alpha$ KG, 1. GetF, O<sub>2</sub>,  $\alpha$ KG, Fe<sup>2+</sup> ascorib acid СООН 2. Boc<sub>2</sub>O СООН 2. Boc<sub>2</sub>O, NaOH, EtOH СООН СООН N Boc Boc 74% yield over 2 steps 100% yield over 2 steps 11 14 (500 mg scale) (multi-aram scale) 11 17

Renata, H. et al. J. Am. Chem. Soc. 2021, 143 (3), 1673–1679.

Renata, H. et al. ACS Cent. Sci. 2023, 9 (2), 239-251.

### **Enzyme discovery for building block construction**



### Enzyme discovery and optimization for building block construction



### Enzyme discovery and optimization for building block construction





SaEctD was identified from *Sphingopyxis alaskensis* 

Vargas, C. et al. J Bacteriol 2006, 188 (11), 3774-3784.

Ectoine

### Preparative scale production of enantiopure piperidine building blocks



### **Radical cross-coupling**



Baran, P. S. et al. Science 2022, 375 (6582), 745–752.



Baran, P. S. et al. J. Am. Chem. Soc. 2022, 144 (38), 17709-17720.



Baran, P. S. et al. J. Am. Chem. Soc. 2024, 146 (9), 6209-6216.

Baran, P. S. *Nature* 2022, 606 (7913), 313–318.

#### **3-Hydroxypipecolic acid diversification**



#### **3-Hydroxypipecolic acid diversification**



**Previous works** 



Britton, R. et al. Org. Lett. 2013, 15 (8), 1914–1917.

#### 4-Hydroxypipecolic acid diversification



Previous works



Szewczyk, J. M. et al. Org. Lett. 2000, 2 (8), 1041-1043.

4-Hydroxypipecolic acid diversification



Adams, C. M. et al. J. Med. Chem. 2020, 63 (11), 5697-5722.

#### 5-Hydroxypipecolic acid diversification



Each diastereomer was prepared separated

#### 4-Hydroxynipecotic acid diversification



#### 4-Hydroxynipecotic acid diversification



Preparative scale production of enantiopure piperidine building blocks



# Thanks